
Abstract. The resistance distance rij between two verti-
ces vi and vj of a (connected, molecular) graph G is equal
to the resistance between the respective two points of an
electrical network, constructed so as to correspond to G,
such that the resistance of any two adjacent points is
unity. We show how the matrix elements rij can be ex-
pressed in terms of the Laplacian eigenvalues and ei-
genvectors of G. In addition, we determine certain
properties of the resistance matrix R ¼ jjrijjj.

Keywords: Resistance distance – Kirchhoff index –
Laplacian spectrum

1 Introduction

The standard distance between two vertices vi and vj of a
(connected) graph G, denoted by dij, is defined as the
length (number of edges) of a shortest path that connects
vi and vj [1]. The vertex–distance concept found numer-
ous chemical applications [2, 3]. In order to examine
other possible metrics in (molecular) graphs, Klein and
Randić [4] proposed considering the resistance distance
between the vertices of a graph G, denoted by rij, defined
to be the effective electrical resistance between nodes i
and j of a network N corresponding to G, with unit
resistors taken between nodes i and j of a network N
corresponding to G, with unit resistors taken between
nodes of N whenever the corresponding site of G (namely
vi and vj) are connected by an edge. The quantities rij are
computed by methods of the theory of resistive electrical
networks (based on Ohm’s and Kirchhoff’s laws). For
acyclic graphs rij ¼ dij and therefore the resistance
distances are primarily of interest in the case of cycle–
containing (molecular) graphs.

The resistance–distance concept was much studied in
the chemical literature [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

In analogy to the classical Wiener index [2, 3], one
introduced [4] the sum of resistance distances of all pairs
of vertices of a molecular graph,

Kf ¼
X

i<j

rij ð1Þ

a structure–descriptor that eventually was named [5] the
‘‘Kirchhoff index’’.

The matrix whose ði; jÞ of entry is rij is called the
resistance matrix (of the respective graph G), and will be
denoted by R. Evidently, R is symmetric, has a zero
diagonal, and its order coincides with the number n of
vertices of G.

Within the theory of electrical networks the standard
method to compute the resistance matrix is via the
Moore–Penrose generalized inverse Ly of the Laplacian
matrix of the underlying graph G:

rij ¼ ðLyÞii þ ðLyÞjj � ðLyÞij � ðLyÞji : ð2Þ

Recall that the Laplacian matrix is singular and,
therefore, has no usual inverse. More on the Moore–
Penrose generalized inverse of a (singular) matrix can be
found elsewhere [7, 15, 16]. Equation (2) was stated
already in Refs. [4, 6], but was, for sure, known much
earlier.

Because the Moore–Penrose generalized inverse of a
singular matrix is not a concept familiar to most theo-
retical chemists, efforts have been made to express rij in
terms of the inverse of some nonsingular matrix [4, 17,
18]. Such a matrix has, indeed, been found [13].

Let G be a graph and let its vertices be labeled by
v1; v2; . . . ; vn. The Laplacian matrix of G, denoted by L, is
a square matrix of order n whose ði; jÞ entry is defined by

Lij ¼

�1 if i 6¼ j and the vertices vi and vj

are adjacent

0 if i 6¼ j and the vertices vi and vj

are not adjacent

di if i ¼ j

8
>>>><

>>>>:

; ð3Þ

where di is the degree (number of first neighbors) of the
vertex vi.
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By J we denote the square matrix of order n all of
whose elements are unity. Then for all connected graphs
(with two or more vertices) the matrix Lþ 1

n J is non-
singular, its inverse

X ¼ jjxijjj ¼ ðLþ
1

n
JÞ�1

exists, and [13]

rij ¼ xii þ xjj � 2xij : ð4Þ
In this work we determine some basic properties of

the matrix X and, in particular, show that its eigenvalues
and eigenvectors are closely related to the Laplacian
eigenvalues and eigenvectors. Using these results we then
express the resistance distance rij in terms of the La-
placian eigenvalues and eigenvectors, and establish a
number of additional properties of the resistance matrix
R. To do this we first remind the readers of a few results
from Laplacian graph spectral theory.

2 Laplacian spectral theory

Laplacian spectral theory is a well elaborated part of
algebraic graph theory and its details can be found in
numerous reviews, for instance in Refs. [19, 20, 21, 22,
23, 24].

The Laplacian matrix L of the graph G is defined
via Eq. (3). Its eigenvalues and eigenvectors are
referred to as the Laplacian eigenvalues and Lapla-
cian eigenvectors of G. These will be denoted by
l1; l2; . . . ; ln and U1;U2; . . . ;Un, respectively, so that the
equalities

LUi ¼ liUi ð5Þ

are satisfied for i ¼ 1; 2; . . . ; n. We label the Laplacian
eigenvalues so that

l1 � l2 � � � � � ln :

Then, ln is always equal to zero, whereas ln�1 differs
from zero if and only if the underlying graph G is
connected. Consequently, the Laplacian matrix of any
graph is singular, and its inverse does not exist. (We are
interested in molecular graphs, that necessarily are
connected. Therefore in what follows it will be under-
stood that ln�1 6¼ 0:)

According to Eq. (5), the eigenvectors Ui are
n-dimensional column vectors. We choose them to be
normalized, real–valued and mutually orthogonal, and
denote their components so that Ui ¼ ðui1; ui2; . . . ; uinÞt.
Here and later the superscript t indicates transposition.

In the notation just introduced, we have

ULUt ¼ diag ½l1; l2; . . . ; ; ln�1; ln� ð6Þ
where U ¼ jjuijjj is an orthogonal (in the general case:
unitary) matrix, i. e.,

UUt ¼ UtU ¼ I

i.e.,

Xn

k¼1
uikujk ¼

Xn

k¼1
ukiukj ¼

1 if i ¼ j
0 if i 6¼ j

�
: ð7Þ

From Eq. (6) follows L ¼ Utdiag ½l1; l2; . . . ; ; ln�1; ln�U
which is tantamount to

Lij ¼
Xn

k¼1
lkukiukj :

Because ln ¼ 0,

Lij ¼
Xn�1

k¼1
lkukiukj : ð8Þ

The sum of the components of the Laplacian eigenvector
Ui will be denoted by rðUiÞ.

Let 1 and 0 be the n-dimensional column vectors
whose components are equal to zero and unity, respec-
tively. Then, directly from the definition (Eq. 3) follows
L1 ¼ 0, i.e.,

L1 ¼ 0 � 1
This means that the (normalized) Laplacian eigenvector
corresponding to the eigenvalue zero is of the form
Un ¼ ð1=

ffiffiffi
n
p Þ1, and rðUnÞ ¼

ffiffiffi
n
p

. Because all other
Laplacian eigenvectors are orthogonal to Un their r
values are zero. Thus we have

rðUiÞ ¼
0 if i ¼ 1; 2; . . . ; n� 1ffiffiffi

n
p

if i ¼ n

�
: ð9Þ

Of the many known relations between the structure of a
graph and its Laplacian spectrum [19, 20, 21, 22, 23, 24]
we mention here only one:

Yn�1

k¼1
lk ¼ ntðGÞ ; ð10Þ

where tðGÞ is the number of spanning trees of the graph G.

3 The spectrum of matrix X

We first show that the matrix U, occurring in Eq. (6),
diagonalizes also the matrix J. Indeed,

ðUJUtÞij ¼
X

k

X

‘

ðUÞikðJÞk‘ðUtÞ‘j

¼
X

k

X

‘

uikJk‘uj‘

¼
X

k

X

‘

uikuj‘

¼
X

k

uik

 !
X

‘

uj‘

 !
¼ rðUiÞrðUjÞ :

Therefore, in view of Eq. (9),

ðUJUtÞij ¼
n if i ¼ j ¼ n
0 otherwise

n

i. e.,

UJUt ¼ diag ½0; 0; . . . ; 0; n� : ð11Þ
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From Eqs. (6) and (11) we now readily obtain the
following.

Theorem 1. Let G be a graph on n vertices, n � 2, and
let l1, l2; . . . ; ln�1, ln ¼ 0 be its Laplacian eigenvalues.
Then the eigenvalues of the matrix Lþ 1

nJ are l1,
l2; . . . ; ln�1, 1.

Proof. It is sufficient to show thatU diagonalizes Lþ 1
n J:

UðLþ 1

n
JÞUt ¼ ULUt þ 1

n
UJUt

¼ diag ½l1; l2; . . . ; ln�1; 0�

þ 1

n
diag ½0; 0; . . . ; 0; n�

¼ diag ½l1; l2; . . . ; ln�1; 1� :

Theorem 2. If the graph G, specified in theorem 1, is
connected, then

1. The matrix X ¼ jjxijjj ¼ ðLþ 1
n JÞ

�1 exists.
2. The eigenvalues of X are 1=l1, 1=l2, . . ., 1=ln�1, 1.
3. The eigenvectors of X coincide with the Laplacian

eigenvectors U1;U2; . . . ;Un�1;Un of G.
4.

xij ¼
1

n
þ
Xn�1

k¼1

1

lk
ukiukj ð12Þ

and, in particular,

xii ¼
1

n
þ
Xn�1

k¼1

u2ki

lk
> 0 : ð13Þ

5.

Xn

i¼1
xii ¼ 1þ

Xn�1

k¼1

1

lk
: ð14Þ

Proof. Statements 1–3 are immediate consequences of
theorem 1. In order to obtain statement (4) note that

X ¼ Utdiag
1

l1

;
1

l2

; . . . ;
1

ln�1
; 1

� �
U

and recall that uni ¼ 1=
ffiffiffi
n
p

for all i ¼ 1; 2; . . . ; n.
The left–hand side of Eq. (14) is the trace of the

matrix X, equal to the sum of its eigenvalues.

4 Resistance distance and Kirchhoff index in terms
of Laplacian eigenvalues and eigenvectors

In this section we state three corollaries of theorem 2,
connecting the resistance distances with Laplacian
spectral theory.

Substituting Eqs. (12) and (13) back into Eq. (4), one
straightforwardly arrives at a noteworthy result, by
means of which the resistance distance is expressed in
terms of the eigenvalues and eigenvectors of the Lapla-
cian matrix:

Corollary 2.1. For any connected n-vertex graph, n � 2,

rij ¼
Xn�1

k¼1

1

lk
ðuki � ukjÞ2 : ð15Þ

Needless to say that Eq. (15) provides a direct and
easy route for computing the resistance distances in
any molecular graph. A result equivalent to corollary
2.1 was earlier deduced by Klein (see Eq. (3.3) in Ref. [8]).

Bearing in mind that l1 � lk � ln�1 holds for
k ¼ 2; . . . ; n� 2, and taking into account the relations in
Eq. (7), we estimate the resistance distance as follows:

Corollary 2.2. For any connected n-vertex graph, n � 2,
and for i 6¼ j,

2

l1

� rij �
2

ln�1
:

Corollary 2.3. For any connected n-vertex graph, n � 2,
the Kirchhoff index, Eq. (1), is expressed in terms of
Laplacian eigenvalues as follows:

Kf ¼ n
Xn�1

k¼1

1

lk
: ð16Þ

Proof. Starting with Eq. (1) and using (15) we get

Kf ¼
X

i<j

rij¼
1

2

Xn

i¼1

Xn

j¼1
rij¼

1

2

Xn

i¼1

Xn

j¼1

Xn�1

k¼1

1

lk
ðuki�ukjÞ2

" #

¼ 1

2

Xn�1

k¼1

1

lk
n
Xn

i¼1
u2

kiþn
Xn

j¼1
u2

kj�2
Xn

i¼1
uki

 !
Xn

j¼1
ukj

 !" #

¼ 1

2

Xn�1

k¼1

1

lk
n
Xn

i¼1
u2

kiþn
Xn

j¼1
u2

kj�2rðUkÞrðUkÞ
" #

:

Equation (16) is now obtained by taking into account
Eqs. (7) and (9). Equation (16) was reported earlier [7],
but was deduced using a completely different way of
reasoning.

5 On the determinant of the resistance matrix

In this section we consider the determinant of the
resistance matrix R ¼ jjrijjj. In view of Eq. (4), this
matrix can be written as

R ¼ diag ½x11; x22; . . . ; xnn�J
þ J diag ½x11; x22; . . . ; xnn� � 2X : ð17Þ

Then

URUt ¼ ðU diag½x11; x22; . . . ; xnn�UtÞðUJUtÞ

þ ðUJUtÞðU diag ½x11; x22; . . . ; xnn�UtÞ

� 2UXUt

and by taking into account Eq. (11) and theorem 2,
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ðURUtÞij¼

�2=li for i¼ j ; 1� i�n�1
0 for i 6¼ j ; 1� i;j�n�1

n
Pn

k¼1
xkkuikunk for j¼n ; 1� i�n�1

n
Pn

k¼1
xkkunkujk for i¼n ; 1� j�n�1

�2þ2n
Pn

k¼1
xkku2nk for i¼ j¼n

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Using Eq. (14) and the fact that unk ¼ 1=
ffiffiffi
n
p

; k ¼ 1;
2; . . . ; n, the previous expressions are simplified as

ðURUtÞij ¼

�2=li for i ¼ j ; 1 � i � n� 1

0 for i 6¼ j ; 1 � i; j � n� 1

ffiffiffi
n
p Pn

k¼1
xkkuik for j ¼ n ; 1 � i � n� 1

ffiffiffi
n
p Pn

k¼1
xkkujk for i ¼ n ; 1 � j � n� 1

2
Pn�1

k¼1
ð1=lkÞ for i ¼ j ¼ n

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

The determinant of the resistance matrix R is thus

By a pertinent linear combination of the rows of this
determinant, it can be transformed into

detR¼

�2=l1 0 � � � 0
ffiffiffi
n
p Pn

k¼1
xkku1k

0 �2=l2 � � � 0
ffiffiffi
n
p Pn

k¼1
xkku2k

..

. ..
. . .

. ..
. ..

.

0 0 � � � �2=ln�1
ffiffiffi
n
p Pn

k¼1
xkkun�1;k

0 0 � � � 0 Sþ2
Pn�1

k¼1
1=lk

���������������������

���������������������

where

S ¼ n
2

Xn�1

k¼1
lk

Xn

i¼1
xiiuki

 !2

:

Therefore

detR ¼ S þ 2
Xn�1

k¼1

1

lk

 !
Yn�1

i¼1
� 2

li

� �

¼ ð�1Þn�1 2n�1

ntðGÞ S þ 2
Xn�1

k¼1

1

lk

 !

where tðGÞ is the number of spanning trees of the graph
G, see Eq. (10).

For connected graphs with at least two vertices,
S � 0, whereas

Pn�1
i¼1 1=li ¼ Kf =n is strictly positive-

valued. Therefore S þ 2
Pn�1

k¼1
1
lk
> 0, implying that detR

is always different from zero. In other words the resis-

tance matrix of any connected graphs (with at least two
vertices) is nonsingular.

The sign of detR depends solely on the parity of
the number of vertices of G. As shown in the sub-
sequent section, this property of detR is a conse-
quence of the fact that the resistance matrix has a
single positive eigenvalue, and n� 1 negative eigen-
values.

Bearing in mind Eq. (8) we have

Xn�1

k¼1
lk

Xn

i¼1
xiiuki

 !2

¼
Xn�1

k¼1

Xn

i¼1

Xn

j¼1
lkðxiiukiÞðxjjukjÞ

¼
Xn

i¼1

Xn

j¼1
xiixjj

Xn�1

k¼1
lkukiukj

 !

¼
Xn

i¼1

Xn

j¼1
xiixjjLij

and therefore the auxiliary quantity S is in the following
manner related to the Laplacian matrix L:

S ¼ n
2
ðx11; x22; . . . ; xnnÞLðx11; x22; . . . ; xnnÞt : ð18Þ

The results obtained in this section can be summarized
as

Theorem 3. Let G be a graph specified in theorem 1,
possessing tðGÞ > 0 spanning trees. Then the determi-
nant of its resistance matrix is equal to

detR ¼

�2=l1 0 � � � 0
ffiffiffi
n
p Pn

k¼1
xkku1k

0 �2=l2 � � � 0
ffiffiffi
n
p Pn

k¼1
xkku2k

..

. ..
. . .

. ..
. ..

.

0 0 � � � �2=ln�1
ffiffiffi
n
p Pn

k¼1
xkkun�1;k

ffiffiffi
n
p Pn

k¼1
xkku1k

ffiffiffi
n
p Pn

k¼1
xkku2k � � �

ffiffiffi
n
p Pn

k¼1
xkkun�1;k 2

Pn�1

k¼1
ð1=lkÞ

�������������������

�������������������

:
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ð�1Þn�1 2n�1

ntðGÞ S þ 2
Xn�1

k¼1

1

lk

 !
;

where S is given by Eq. (18).
Recall that the matrix elements x11; x22; . . . ; xnn can be

computed via Eq. (13). We thus see that by means of
theorem 3 the determinant of the resistance matrix is
expressed solely in terms of Laplacian eigenvalues and
eigenvectors.

6 Estimating the eigenvalues of the resistance matrix

In this section we establish bounds for the eigenvalues of
the resistance matrix R and determine the number of
positive and negative eigenvalues.

Let M denote any symmetric real square matrix of
order n and let k1ðMÞ � k2ðMÞ � � � � � knðMÞ be its ei-
genvalues.

Consider first the matrix B whose ði; jÞ entry is equal
to xii þ xjj. Thus, B is symmetric and all its elements are
positive-valued, see Eq. (13). Therefore all eigenvalues of
B are real.

The matrix B can also be written in the form

B ¼ diag½x11; x22; . . . ; xnn�Jþ Jdiag½x11; x22; . . . ; xnn�
ð19Þ

which should be compared with Eq. (17).
Since the rank of the matrix J is 1, the rank of B

is less than or equal to 2. Hence kkðBÞ ¼ 0 for
k ¼ 2; . . . ; n� 1.

The eigenvalues k1ðBÞ and knðBÞ are determined by
the conditions

k1ðBÞ þ knðBÞ ¼ 2
Xn

i¼1
xii

k1ðBÞ � knðBÞ ¼
X

i<j

2xii xii þ xjj

xii þ xjj 2xjj

����

����

¼ �
X

i<j

ðxii � xjjÞ2 : ð20Þ

Bearing in mind statements 4 and 5 of theorem 2, we see
that k1ðBÞ is positive-valued whereas knðBÞ � 0. Fur-
thermore, knðBÞ is zero if and only if the conditions
x11 ¼ x22 ¼ � � � ¼ xnn are satisfied, and is strictly negative
otherwise.

Theorem 4. Let G be a connected graph on n vertices,
n � 2. Let l1 and ln�1 be, respectively, the greatest and
smallest positive Laplacian eigenvalue of G. Then the
eigenvalues k1ðRÞ; k2ðRÞ; . . . ; knðRÞ of the resistance
matrix R satisfy the inequalities

k1ðBÞ þminð�2=ln�1;�2Þ � k1ðRÞ � k1ðBÞ � 2=l1 ;

ð21Þ
minð�2=ln�1;�2Þ � kkðRÞ � �2=l1;

k ¼ 2; . . . ; n� 1 ; ð22Þ
knðBÞ þminð�2=ln�1;�2Þ � knðRÞ � knðBÞ �2=l1 : ð23Þ

Proof. Bearing in mind Eqs. (17) and (19), by theorem
4.3.1 in Ref. [25] we have for k ¼ 1; 2; . . . ; n

kkðBÞ þ knð�2XÞ � kkðRÞ � kkðBÞ þ k1ð�2XÞ :
By theorem 2, knð�2XÞ ¼ minð�2=ln�1;�2Þ and
k1ð�2XÞ ¼ maxð�2=l1;�2Þ.

For every connected graph with at least two vertices,
l1 � 2. Therefore maxð�2=l1;�2Þ ¼ �2=l1, and the
bounds (Eqs. 21, 23) follow.

The inequalities (Eq. 22) hold because kkðBÞ ¼ 0 for
k ¼ 2; . . . ; n� 1.

From Eqs. (22) and (23) it is evident that all the ei-
genvalues kkðRÞ; k ¼ 2; . . . ; n, are negative-valued. That
k1ðRÞ is always greater than zero follows from the fact
that already its lower bound k1ðBÞ þminð�2=ln�1;�2Þ
is positive-valued. To see this note that by Eq. (20)

k1ðBÞ � 2
Xn

i¼1
xii

and then by Eq. (14)

k1ðBÞ þminð�2=ln�1;�2Þ

� 2 1þ
Xn�1

k¼1

1

lk

 !
þminð�2=ln�1;�2Þ > 0 :

By this we proved.

Corollary 4.1. The resistance matrix of any connected
graph on n vertices, n � 2, has exactly one positive
eigenvalue and exactly n� 1 negative eigenvalues.
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